愛知県 公立入試 模擬 D

次の各問いに答えよ。

- (1) 9+18÷(-3) を計算せよ。
- (2) (12a²-4a)÷2a を計算せよ。

- (3) $\frac{9}{\sqrt{3}} + \sqrt{75}$ を計算せよ。
- (4) 9a²-4b² を因数分解せよ。

(5) 2次方程式 $x^2-5x-6=0$ を解け。

(6) 関数 $y=2x^2$ で、x の値が 1 から 4 まで増加するとき、変化の割合を求めよ。

(7) 右の図のように、円 O の周上に 4 点 A, B, C, D をとり、AC とBD の 交点を E とする。

∠DAC=50°, ∠AEB=80°のとき、∠ACBの大きさを求めよ。

(1) 1 個 90 円のシュークリームと 1 個 130 円のケーキを合わせて 20 個買ったところ、代金の合計 は2120円だった。シュークリームとケーキをそれぞれ何個買ったか、求めよ。ただし、消費税 については考えないことにする。

(2) Aさんは、自分が所属する部活動の生徒25人について、グラウン表1 Aさんが所属する部活動 ド1周のランニングのタイムを調べることにした。

表 1 は生徒 25 人の記録であり、表 2 はその記録を度数分布表に表 したものである。

このとき、表2のアにあてはまる数を求めよ。また、表2において、 中央値(メジアン)がふくまれているのは、何秒以上何秒未満の階級 であるか求めよ。

の生徒25人の記録 (秒)

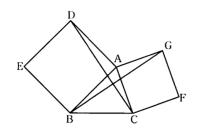
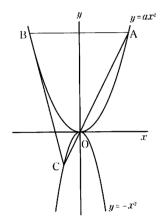

				(12)
63	72	85	61	82
61	76	44	73	64
52	80	62	71	55
79	60	81	67	83
68	73	70	74	66

表2 表1の生徒25人の記録の 度数分布表

階級(秒)			度数(人)
以上 40	~	未満 50	1
50	~	60	2
60	~	70	
70	~	80	ア
80	~	90	5
i	Ħ		25

(3) 右の図のように、 △ABC の辺 AB と AC をそれぞれ1辺 とする、正方形 ADEB と正方形 ACFG をかく。点 D と C. 点BとGをそれぞれ結ぶとき、DC=BG となることを次の ように証明したい。

a に当てはまる辺を書け。また, I , I に 当てはまるもっとも適当なものを、下のアから力の中からそ れぞれ選んで、記号を書け。

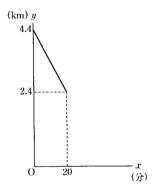

(証明) △ADC と△ABG で、 正方形 ADEB の辺なので、AD=AB …① 正方形 ACFG の辺なので、AC= a …② また、 $\angle DAC = 90^{\circ} + \angle BAC$ 、 $\boxed{I} = 90^{\circ} + \angle BAC$ より、 ∠DAC= I ···③ ②, ③から、 II ので、 △ADC≡△ABG よって、DC=BG

- ア ∠GBA イ ∠BAC ウ ∠BAG
- エ 1組の辺とその両端の角が、それぞれ等しい
- オ 2組の辺とその間の角が、それぞれ等しい
- カ 2組の角が、それぞれ等しい

(1) 数字が書かれた 6 枚のカード $\boxed{1}$. $\boxed{2}$. $\boxed{2}$. $\boxed{3}$. $\boxed{3}$. $\boxed{3}$ がある。これらのカードをよく きって同時に 3 枚取り出すとき、カードに書かれた数字が 3 枚とも異なる確率を求めよ。ただし、 どのカードが取り出されることも同様に確からしいとする。

(2) 右の図で、2 点 A、B は関数 $y=ax^2$ (a は定数、a>0) のグラフ上にあり、線分 AB は x 軸に平行である。 点 A の座標は (6, 12) である。 次の(a), (b)の問いに答えよ。

(a) *a* の値を求めよ。

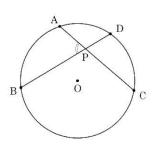


(b) 図のように、関数 $y=-x^2$ のグラフ上に点Cをとり、 $\triangle ABC$ をつくる。

点Cのx座標が-2のとき、 \triangle ABCの面積を求めよ。 ただし、座標軸の1日盛りを1 cm とする。 (3) 妹が、図書館を出発し、途中の公園で休んでから、家まで歩いて帰った。妹が家に着いたのは、図書館を出発してから50分後だった。 兄は、妹が公園を出発したときに自転車で家を出発して、妹と同じ道を通って図書館に向かい、途中で妹とすれ違った。

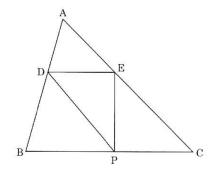
妹が図書館を出発してからx分後の家からの道のりをykmとする。右のグラフは、妹が図書館を出発してから公園に着くまでのxとyの関係を表したものである。

家から図書館までの距離が 4.4 km, 妹が公園から家に向かうときの速さが, 図書館から公園に向かうときの速さの 1.6 倍, 兄が進む速さが時速 12 km であるとき, 次の(a), (b)の問いに答えよ。


- (a) 妹が公園に着いてから家に着くまでの、 $x \ge y$ の関係を表すグラフを解答用紙にかけ。
- (b) 兄が妹とすれ違ったのは、妹が図書館を出発してから何分何秒後か、求めよ。

通流は記れて作成しよう。

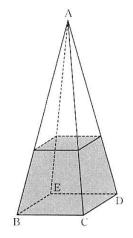
(I) 右の図のように、4 点 A、B、C、D はこの順に円 O の周 上にあり、2 つの弦 AC、BD の交点を P とする。


 $\widehat{AB}+\widehat{CD}$ が円周の $\frac{2}{5}$ であるとき、 $\angle APB$ の大きさを求めよ。

 (2) 右の図のように、△ABCの2辺AB、AC上にそれぞれ点D、Eを、DE#BC、AD:DB=2:3となるようにとり、 点Dと点Eを結ぶ。

このとき,次の(a),(b)の問いに答えよ。

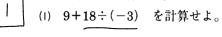
(a) BC=20cm のとき、線分 DE の長さを求めよ。



(b) 辺 BC 上に点 P をとり、△DPE をつくる。△ABC の面積が 50cm² のとき、△DPE の面積を求めよ。

(3) 右の図の立体 ABCDE は、水平な床に置かれた正四角錐の容器で、中には水が 152cm³ 入っている。

水面の面積が $16cm^2$, 正四角錐の底面 BCDE の面積が $36cm^2$ のとき, 次の(a), (b)の問いに答えよ。ただし、容器の厚さは考えないものとする。


(a) 正四角錐 ABCDE の体積を求めよ。

(b) 底面 BCDE から水面までの高さを求めよ。

愛知県 公立入試 模擬 D

次の各問いに答えよ。

$$= 9 + (-6)$$

= $9 - 6 = 3$

(3)
$$\frac{9}{\sqrt{3}} + \sqrt{75}$$
 を計算せよ。

$$= \frac{9 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}} + 5 \sqrt{3}$$

$$= 3 \sqrt{3} + 5 \sqrt{3}$$

$$= 8 \sqrt{3} + 5 \sqrt{3}$$

(5) 2次方程式 $x^2-5x-6=0$ を解け。

$$(x-6)(x+1) = 0$$

$$\chi = 6, -1$$

(2) $(12a^2-4a)\div 2a$ を計算せよ。

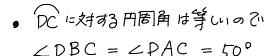
$$= |2a^{2} + 2a - 4a + 2a$$

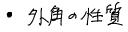
$$= 6a - 2$$

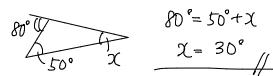
(4) 9a2-4b2 を因数分解せよ。

$$= (3a)^{2} - (2b)^{2}$$

$$= (3a+2b)(3a-2b)$$


関数 $y=2x^2$ で、x の値が 1 から 4 まで増加するとき、変化の割合を求めよ。


$$\frac{4}{2}$$
 2 → 32
 χ 1 → 4 χ 2 = $\frac{32-2}{4-1}$ = $\frac{30}{3}$ = 10
 χ 2 (1+4) = χ 10 χ 2 χ 2 χ 32 χ 4 χ 4 χ 4 χ 5 χ 6 χ 6 χ 6 χ 7 χ 6 χ 7 χ 8 χ 7 χ 8 χ 9 χ 9


(7) 右の図のように、円 O の周上に 4 点 A, B, C, D をとり、AC とBD の 交点を E とする。

∠DAC=50°, ∠AEB=80°のとき、∠ACBの大きさを求めよ。

$$\angle ACB = 2 cd3c$$

(1) 1 個 90 円のシュークリームと 1 個 130 円のケーキを合わせて 20 個買ったところ。代金の合計 は 2120 円だった。シュークリームとケーキをそれぞれ何個買ったか、求めよ。ただし、消費税 については考えないことにする。 メ (名) ソ(ね) 、 +2

$$\begin{cases} x + y = 20 & \text{(i)} \\ 90x + 130y = 2120 & \text{(i)} \\ x + y = 20 & \text{(i)} \\ y = 8 & \text{(i)} \\ x + y = 20 & \text{(i)} \\ y = 8 & \text{(i)} \\ x + y = 20 & \text{(i)} \\ y = 8 & \text{(i)} \\ x + y = 20 & \text{(i)} \\ y = 8 & \text{(i)} \\ x + y = 20 & \text{(i)} \\ y = 8 & \text{(i)} \\ x + y = 20 & \text{(i)} \\ y = 8 & \text{(i)} \\ x + y = 20 & \text{(i)} \\ y = 8 & \text{(i)} \\ y = 12 &$$

$$0 \times 90 - 2$$

$$90 \times + 90 = 1800$$

$$-) 90 \times +130 = 2120$$

$$-409 = -320$$

(2) A さんは、自分が所属する部活動の生徒 25 人について、グラウン 表1 Aさんが所属する部活動 ド1周のランニングのタイムを調べることにした。

表 1 は生徒 25 人の記録であり、表 2 はその記録を度数分布表に表 したものである。

このとき、表2のアにあてはまる数を求めよ。また、表2において、 中央値(メジアン)がふくまれているのは、何秒以上何秒未満の階級 であるか求めよ。

の生徒25人の記録 (秒)

- 63 (72) 85 61 82 61 (76) 44 (73) 64 52 80 62 (71) 55
- ・アは表1の70以上80本満を教えれば包のでは

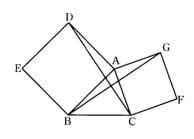

- 60以上70末満は25-(1+2+8+5)=
- ・ 全員で25人なのでまれず人は25~2=12、5 四档五人(2 (3萬目の人であり、)階級は 1二人3。 70以上名丰满の階級

表2 表1の生徒25人の記録の 度数分布表

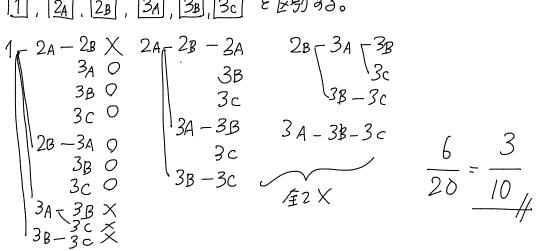
階級	度数(人)	
以上 40 ~	- 未満 - 50	1
50 ~	- 60	2
60 ~	70	>9
70 ~	- 80	ア
80 ~	- 90	5
Ē.	†	25

(3) 右の図のように、△ABC の辺 AB と AC をそれぞれ1辺 とする、正方形 ADEB と正方形 ACFG をかく。点 D と C. 点BとGをそれぞれ結ぶとき、DC=BG となることを次の ように証明したい。

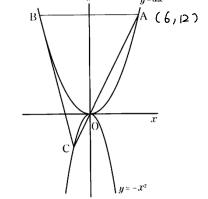
a に当てはまる辺を書け。また、 I に 当てはまるもっとも適当なものを、下のアからカの中からそ れぞれ選んで、記号を書け。

(証明) △ADC と△ABG で.

正方形 ADEB の辺なので、AD=AB …① (分 正方形 ACFG の辺なので、AC= a ···②


 $\sharp t$, $\angle DAC = 90^{\circ} + \angle BAC$, $\boxed{I_{\downarrow}} = 90^{\circ} + \angle BAC \downarrow 0$. ∠DAC= I ···③

②, ③から、 II ので、 △ADC≡△ABG

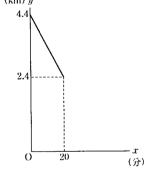

才(①迎②迎③角坳心) よって、DC=BG

- ア ∠GBA イ ∠BAC
- エ 1組の辺とその両端の角が、それぞれ等しい
- オ 2組の辺とその間の角が、それぞれ等しい
- カ 2組の角が、それぞれ等しい

- (1) 数字が書かれた6枚のカード 1. 2. 2. 3. 3. 3がある。これらのカードをよく きって同時に3枚取り出すとき、カードに書かれた数字が3枚とも異なる確率を求めよ。ただし、 どのカードが取り出されることも同様に確からしいとする。
 - [], [2A], [2B], [3A], [3B], [3c] & ESU #3.

- (2) 右の図で、2 点 A、B は関数 $y=ax^2$ (a は定数、a>0) のグラフ上にあり、線分 AB はx軸に平行である。 点 A の座標は(6, 12)である。 次の(a), (b)の問いに答えよ。
 - (a) aの値を求めよ。A(6,12)を頂すので ス=6, 3=12を オーax2に代入すると $12 = \alpha \times 6^2$, $12 = 36\alpha$, $\alpha = \frac{1}{3}$

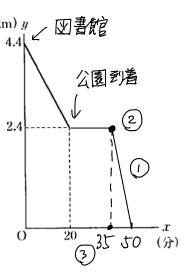
(b) 図のように、関数 $y=-x^2$ のグラフ上に点 C をと り、△ABCをつくる。


 $\underline{\triangle Cox 座標が - 2}$ のとき、 $\triangle ABC$ の面積を求めよ。 ただし、座標軸の1日盛りを1cmとする。

$$f = -(-2)^2 = -4$$
 $f = 2$ $f = -(-2)^2 = -4$

(3) 妹が、図書館を出発し、途中の公園で休んでから、家まで歩いて 帰った。妹が家に着いたのは、図書館を出発してから50分後だった。 兄は、妹が公園を出発したときに自転車で家を出発して、妹と同 じ道を通って図書館に向かい、途中で妹とすれ違った。

妹が図書館を出発してから x 分後の家からの道のりを y kmとす る。右のグラフは、妹が図書館を出発してから公園に着くまでのx とリの関係を表したものである。


家から図書館までの距離が 4.4 km,妹が公園から家に向かうと きの速さが、図書館から公園に向かうときの速さの 1.6 倍、兄が進

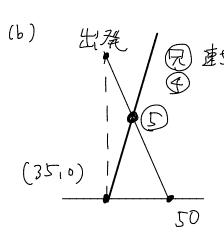
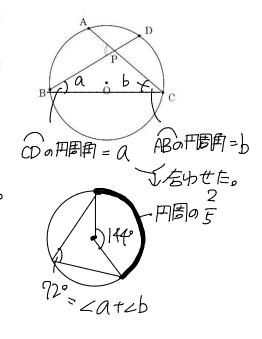

- む速さが時速 12 km であるとき、次の(a)、(b)の問いに答えよ。
- (a) 妹が公園に着いてから家に着くまでの、 $x \ge y$ の関係を表すグラフを解答用紙にかけ。
- (b) 兄が妹とすれ違ったのは、妹が図書館を出発してから何分何秒後か、求めよ。
- (a) ① まなが公園で休んでいた時間は h+35411+1" _____ +5 加まがめかる。

図 → ② の 化 包 (建工) は
$$\frac{4.4 - 2.4 \, \text{km}}{20\%} = \frac{2}{20} = \frac{1}{10} (\text{km/s})$$
 その 1、6 信の 建まで② → ③ なので

1 X1, 6 = 7 (Em/h)

 \mathbb{D} のグラフは他きが一条 2、(50,0)を通り、3=2.4 で交りる。(②) $0 = -\frac{4}{25} \times 50 + b$, b = +8 fact $y = -\frac{4}{25} \times +8$, or $y = 2.4 \times 50$ 代入。 2.4=-0.16×+8,0.16×=5.6, x=35(3)

· f.7 化重生 - で(35,0)を 題るでい 0 = + x35+b b=-7 y= -ス-7とのy=-4ス+8の気点が 50 兄と牧がずり違ったところの

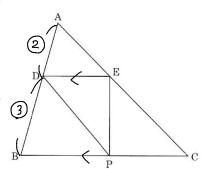

$$\begin{cases} J = \frac{1}{5}x - 7 \\ J = -\frac{4}{25}x + 8 \end{cases} \rightarrow \chi = \frac{125}{3} \pi a \pi (4) \frac{2}{3} \pi (2) + \frac{2}{3}$$

4

(I) 右の図のように、4 点 A、B、C、D はこの順に円 O の周上にあり、2 つの弦 AC、BD の交点を P とする。

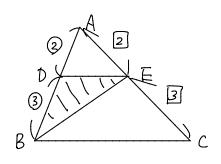
 $\widehat{AB} + \widehat{CD}$ が円周の $\frac{2}{5}$ であるとき、 $\angle APB$ の大きさを求めよ。

 $\angle P$ は外角。性質 \Rightarrow $\angle P = \angle a + \angle b$ $\angle a + b$ は 円周の $\frac{2}{5}$ の 孫に対する 円周角 なのでは 中心角は $360^{\circ} \times \frac{2}{5} = 144^{\circ}$ $\angle t \Rightarrow$ 72 の 円周角は $| + + \circ + 2 = 72^{\circ}$


 (2) 右の図のように、△ABCの2辺AB、AC上にそれぞれ点D、Eを、DE#BC、AD:DB=2:3となるようにとり、 点Dと点Eを結ぶ。

このとき,次の(a),(b)の問いに答えよ。

(a) BC=20cm のとき, 線分 DE の長さを求めよ。

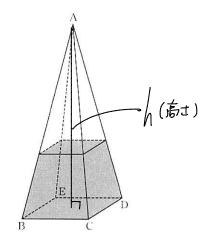

$$AD:AB = DE:BC$$

2:5 = DE:20

(b) 辺 BC 上に点 P をとり、△DPE をつくる。△ABC の面積が 50cm² のとき、△DPE の面積を求めよ。

等種変形をすると下凹のようになるので

— Pojut ——— 高ta等いに色形の面積化 は 庶丑a 比に等い。



$$= 50 \times \frac{2}{5} \times \frac{3}{5} = 12 \text{ cm}^2$$

(3) 右の図の立体 **ABCDE** は、水平な床に置かれた正四角錐の容器で、中には水が **152cm³** 入っている。

水面の面積が $16cm^2$, 正四角錐の底面 BCDE の面積が $36cm^2$ のとき, 次の(a), (b)の問いに答えよ。ただし、容器の厚さは考えないものとする。

(a) 正四角錐 ABCDE の体積を求めよ。

- (b) 底面 BCDE から水面までの高さを求めよ。
- (a)36:16=9:4=32:22 toので ABCDEと AFGHIの 四角錐の相似には 3:2。

よって 体後比は 3³: 2³ = 27:8

かにがり、2113年籍上には27-8=19となる。

比例式生作32

$$27 = 19 = 2 = 152$$

$$\frac{\chi = 216 \text{ cm}^{3}}{4}$$

(b) ABCDEの高さをかとすると 216=36×h× 1 とはり N=18cm

(a) b) 270 正四角錐 n 相似红 t 3:25071

AFGHIの高さは
$$18\times\frac{2}{3}=12cm$$

よ、て店面BCDE から水面まではあまは 18-12= 6 cm